3.4.82 \(\int \frac {1}{(a+a \cos (c+d x))^{5/2} \sqrt {\sec (c+d x)}} \, dx\) [382]

Optimal. Leaf size=157 \[ \frac {5 \text {ArcTan}\left (\frac {\sqrt {a} \sin (c+d x)}{\sqrt {2} \sqrt {\cos (c+d x)} \sqrt {a+a \cos (c+d x)}}\right ) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}}{16 \sqrt {2} a^{5/2} d}+\frac {\sin (c+d x)}{4 d (a+a \cos (c+d x))^{5/2} \sqrt {\sec (c+d x)}}+\frac {\sin (c+d x)}{16 a d (a+a \cos (c+d x))^{3/2} \sqrt {\sec (c+d x)}} \]

[Out]

1/4*sin(d*x+c)/d/(a+a*cos(d*x+c))^(5/2)/sec(d*x+c)^(1/2)+1/16*sin(d*x+c)/a/d/(a+a*cos(d*x+c))^(3/2)/sec(d*x+c)
^(1/2)+5/32*arctan(1/2*sin(d*x+c)*a^(1/2)*2^(1/2)/cos(d*x+c)^(1/2)/(a+a*cos(d*x+c))^(1/2))*cos(d*x+c)^(1/2)*se
c(d*x+c)^(1/2)/a^(5/2)/d*2^(1/2)

________________________________________________________________________________________

Rubi [A]
time = 0.23, antiderivative size = 157, normalized size of antiderivative = 1.00, number of steps used = 6, number of rules used = 6, integrand size = 25, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.240, Rules used = {4307, 2843, 3057, 12, 2861, 211} \begin {gather*} \frac {5 \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \text {ArcTan}\left (\frac {\sqrt {a} \sin (c+d x)}{\sqrt {2} \sqrt {\cos (c+d x)} \sqrt {a \cos (c+d x)+a}}\right )}{16 \sqrt {2} a^{5/2} d}+\frac {\sin (c+d x)}{16 a d \sqrt {\sec (c+d x)} (a \cos (c+d x)+a)^{3/2}}+\frac {\sin (c+d x)}{4 d \sqrt {\sec (c+d x)} (a \cos (c+d x)+a)^{5/2}} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[1/((a + a*Cos[c + d*x])^(5/2)*Sqrt[Sec[c + d*x]]),x]

[Out]

(5*ArcTan[(Sqrt[a]*Sin[c + d*x])/(Sqrt[2]*Sqrt[Cos[c + d*x]]*Sqrt[a + a*Cos[c + d*x]])]*Sqrt[Cos[c + d*x]]*Sqr
t[Sec[c + d*x]])/(16*Sqrt[2]*a^(5/2)*d) + Sin[c + d*x]/(4*d*(a + a*Cos[c + d*x])^(5/2)*Sqrt[Sec[c + d*x]]) + S
in[c + d*x]/(16*a*d*(a + a*Cos[c + d*x])^(3/2)*Sqrt[Sec[c + d*x]])

Rule 12

Int[(a_)*(u_), x_Symbol] :> Dist[a, Int[u, x], x] /; FreeQ[a, x] &&  !MatchQ[u, (b_)*(v_) /; FreeQ[b, x]]

Rule 211

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[a/b, 2]/a)*ArcTan[x/Rt[a/b, 2]], x] /; FreeQ[{a, b}, x]
&& PosQ[a/b]

Rule 2843

Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Sim
p[b*Cos[e + f*x]*(a + b*Sin[e + f*x])^m*((c + d*Sin[e + f*x])^n/(a*f*(2*m + 1))), x] - Dist[1/(a*b*(2*m + 1)),
 Int[(a + b*Sin[e + f*x])^(m + 1)*(c + d*Sin[e + f*x])^(n - 1)*Simp[a*d*n - b*c*(m + 1) - b*d*(m + n + 1)*Sin[
e + f*x], x], x], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^
2, 0] && LtQ[m, -1] && LtQ[0, n, 1] && (IntegersQ[2*m, 2*n] || (IntegerQ[m] && EqQ[c, 0]))

Rule 2861

Int[1/(Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]]*Sqrt[(c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)]]), x_Symbol] :> D
ist[-2*(a/f), Subst[Int[1/(2*b^2 - (a*c - b*d)*x^2), x], x, b*(Cos[e + f*x]/(Sqrt[a + b*Sin[e + f*x]]*Sqrt[c +
 d*Sin[e + f*x]]))], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 -
 d^2, 0]

Rule 3057

Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)])*((c_.) + (d_.)*sin[(e_
.) + (f_.)*(x_)])^(n_), x_Symbol] :> Simp[b*(A*b - a*B)*Cos[e + f*x]*(a + b*Sin[e + f*x])^m*((c + d*Sin[e + f*
x])^(n + 1)/(a*f*(2*m + 1)*(b*c - a*d))), x] + Dist[1/(a*(2*m + 1)*(b*c - a*d)), Int[(a + b*Sin[e + f*x])^(m +
 1)*(c + d*Sin[e + f*x])^n*Simp[B*(a*c*m + b*d*(n + 1)) + A*(b*c*(m + 1) - a*d*(2*m + n + 2)) + d*(A*b - a*B)*
(m + n + 2)*Sin[e + f*x], x], x], x] /; FreeQ[{a, b, c, d, e, f, A, B, n}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2
- b^2, 0] && NeQ[c^2 - d^2, 0] && LtQ[m, -2^(-1)] &&  !GtQ[n, 0] && IntegerQ[2*m] && (IntegerQ[2*n] || EqQ[c,
0])

Rule 4307

Int[(csc[(a_.) + (b_.)*(x_)]*(c_.))^(m_.)*(u_), x_Symbol] :> Dist[(c*Csc[a + b*x])^m*(c*Sin[a + b*x])^m, Int[A
ctivateTrig[u]/(c*Sin[a + b*x])^m, x], x] /; FreeQ[{a, b, c, m}, x] &&  !IntegerQ[m] && KnownSineIntegrandQ[u,
 x]

Rubi steps

\begin {align*} \int \frac {1}{(a+a \cos (c+d x))^{5/2} \sqrt {\sec (c+d x)}} \, dx &=\left (\sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \frac {\sqrt {\cos (c+d x)}}{(a+a \cos (c+d x))^{5/2}} \, dx\\ &=\frac {\sin (c+d x)}{4 d (a+a \cos (c+d x))^{5/2} \sqrt {\sec (c+d x)}}+\frac {\left (\sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \frac {\frac {a}{2}+a \cos (c+d x)}{\sqrt {\cos (c+d x)} (a+a \cos (c+d x))^{3/2}} \, dx}{4 a^2}\\ &=\frac {\sin (c+d x)}{4 d (a+a \cos (c+d x))^{5/2} \sqrt {\sec (c+d x)}}+\frac {\sin (c+d x)}{16 a d (a+a \cos (c+d x))^{3/2} \sqrt {\sec (c+d x)}}+\frac {\left (\sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \frac {5 a^2}{4 \sqrt {\cos (c+d x)} \sqrt {a+a \cos (c+d x)}} \, dx}{8 a^4}\\ &=\frac {\sin (c+d x)}{4 d (a+a \cos (c+d x))^{5/2} \sqrt {\sec (c+d x)}}+\frac {\sin (c+d x)}{16 a d (a+a \cos (c+d x))^{3/2} \sqrt {\sec (c+d x)}}+\frac {\left (5 \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \frac {1}{\sqrt {\cos (c+d x)} \sqrt {a+a \cos (c+d x)}} \, dx}{32 a^2}\\ &=\frac {\sin (c+d x)}{4 d (a+a \cos (c+d x))^{5/2} \sqrt {\sec (c+d x)}}+\frac {\sin (c+d x)}{16 a d (a+a \cos (c+d x))^{3/2} \sqrt {\sec (c+d x)}}-\frac {\left (5 \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \text {Subst}\left (\int \frac {1}{2 a^2+a x^2} \, dx,x,-\frac {a \sin (c+d x)}{\sqrt {\cos (c+d x)} \sqrt {a+a \cos (c+d x)}}\right )}{16 a d}\\ &=\frac {5 \tan ^{-1}\left (\frac {\sqrt {a} \sin (c+d x)}{\sqrt {2} \sqrt {\cos (c+d x)} \sqrt {a+a \cos (c+d x)}}\right ) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}}{16 \sqrt {2} a^{5/2} d}+\frac {\sin (c+d x)}{4 d (a+a \cos (c+d x))^{5/2} \sqrt {\sec (c+d x)}}+\frac {\sin (c+d x)}{16 a d (a+a \cos (c+d x))^{3/2} \sqrt {\sec (c+d x)}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]
time = 0.70, size = 122, normalized size = 0.78 \begin {gather*} \frac {-5 \tanh ^{-1}\left (\sqrt {-\sec (c+d x) \sin ^2\left (\frac {1}{2} (c+d x)\right )}\right ) \cot \left (\frac {1}{2} (c+d x)\right ) \sqrt {2-2 \sec (c+d x)}+48 \csc ^3(c+d x) \sin ^4\left (\frac {1}{2} (c+d x)\right )-2 \tan ^3\left (\frac {1}{2} (c+d x)\right )}{32 a^2 d \sqrt {a (1+\cos (c+d x))} \sqrt {\sec (c+d x)}} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[1/((a + a*Cos[c + d*x])^(5/2)*Sqrt[Sec[c + d*x]]),x]

[Out]

(-5*ArcTanh[Sqrt[-(Sec[c + d*x]*Sin[(c + d*x)/2]^2)]]*Cot[(c + d*x)/2]*Sqrt[2 - 2*Sec[c + d*x]] + 48*Csc[c + d
*x]^3*Sin[(c + d*x)/2]^4 - 2*Tan[(c + d*x)/2]^3)/(32*a^2*d*Sqrt[a*(1 + Cos[c + d*x])]*Sqrt[Sec[c + d*x]])

________________________________________________________________________________________

Maple [A]
time = 0.25, size = 221, normalized size = 1.41

method result size
default \(\frac {\sqrt {a \left (1+\cos \left (d x +c \right )\right )}\, \cos \left (d x +c \right ) \left (-1+\cos \left (d x +c \right )\right )^{3} \left (\sqrt {2}\, \sqrt {\frac {\cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\, \left (\cos ^{2}\left (d x +c \right )\right )+5 \arcsin \left (\frac {-1+\cos \left (d x +c \right )}{\sin \left (d x +c \right )}\right ) \cos \left (d x +c \right ) \sin \left (d x +c \right )+4 \sqrt {2}\, \sqrt {\frac {\cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\, \cos \left (d x +c \right )+5 \arcsin \left (\frac {-1+\cos \left (d x +c \right )}{\sin \left (d x +c \right )}\right ) \sin \left (d x +c \right )-5 \sqrt {2}\, \sqrt {\frac {\cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\right ) \sqrt {2}}{32 d \sqrt {\frac {1}{\cos \left (d x +c \right )}}\, \left (\frac {\cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}\right )^{\frac {3}{2}} \sin \left (d x +c \right )^{7} a^{3}}\) \(221\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/(a+a*cos(d*x+c))^(5/2)/sec(d*x+c)^(1/2),x,method=_RETURNVERBOSE)

[Out]

1/32/d*(a*(1+cos(d*x+c)))^(1/2)*cos(d*x+c)*(-1+cos(d*x+c))^3*(2^(1/2)*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*cos(d*
x+c)^2+5*arcsin((-1+cos(d*x+c))/sin(d*x+c))*cos(d*x+c)*sin(d*x+c)+4*2^(1/2)*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*
cos(d*x+c)+5*arcsin((-1+cos(d*x+c))/sin(d*x+c))*sin(d*x+c)-5*2^(1/2)*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2))/(1/cos
(d*x+c))^(1/2)/(cos(d*x+c)/(1+cos(d*x+c)))^(3/2)/sin(d*x+c)^7*2^(1/2)/a^3

________________________________________________________________________________________

Maxima [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Failed to integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(a+a*cos(d*x+c))^(5/2)/sec(d*x+c)^(1/2),x, algorithm="maxima")

[Out]

integrate(1/((a*cos(d*x + c) + a)^(5/2)*sqrt(sec(d*x + c))), x)

________________________________________________________________________________________

Fricas [A]
time = 0.43, size = 167, normalized size = 1.06 \begin {gather*} -\frac {5 \, \sqrt {2} {\left (\cos \left (d x + c\right )^{3} + 3 \, \cos \left (d x + c\right )^{2} + 3 \, \cos \left (d x + c\right ) + 1\right )} \sqrt {a} \arctan \left (\frac {\sqrt {2} \sqrt {a \cos \left (d x + c\right ) + a} \sqrt {\cos \left (d x + c\right )}}{\sqrt {a} \sin \left (d x + c\right )}\right ) - \frac {2 \, \sqrt {a \cos \left (d x + c\right ) + a} {\left (\cos \left (d x + c\right )^{2} + 5 \, \cos \left (d x + c\right )\right )} \sin \left (d x + c\right )}{\sqrt {\cos \left (d x + c\right )}}}{32 \, {\left (a^{3} d \cos \left (d x + c\right )^{3} + 3 \, a^{3} d \cos \left (d x + c\right )^{2} + 3 \, a^{3} d \cos \left (d x + c\right ) + a^{3} d\right )}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(a+a*cos(d*x+c))^(5/2)/sec(d*x+c)^(1/2),x, algorithm="fricas")

[Out]

-1/32*(5*sqrt(2)*(cos(d*x + c)^3 + 3*cos(d*x + c)^2 + 3*cos(d*x + c) + 1)*sqrt(a)*arctan(sqrt(2)*sqrt(a*cos(d*
x + c) + a)*sqrt(cos(d*x + c))/(sqrt(a)*sin(d*x + c))) - 2*sqrt(a*cos(d*x + c) + a)*(cos(d*x + c)^2 + 5*cos(d*
x + c))*sin(d*x + c)/sqrt(cos(d*x + c)))/(a^3*d*cos(d*x + c)^3 + 3*a^3*d*cos(d*x + c)^2 + 3*a^3*d*cos(d*x + c)
 + a^3*d)

________________________________________________________________________________________

Sympy [F(-2)]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Exception raised: SystemError} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(a+a*cos(d*x+c))**(5/2)/sec(d*x+c)**(1/2),x)

[Out]

Exception raised: SystemError >> excessive stack use: stack is 6438 deep

________________________________________________________________________________________

Giac [F(-1)] Timed out
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Timed out} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(a+a*cos(d*x+c))^(5/2)/sec(d*x+c)^(1/2),x, algorithm="giac")

[Out]

Timed out

________________________________________________________________________________________

Mupad [F]
time = 0.00, size = -1, normalized size = -0.01 \begin {gather*} \int \frac {1}{\sqrt {\frac {1}{\cos \left (c+d\,x\right )}}\,{\left (a+a\,\cos \left (c+d\,x\right )\right )}^{5/2}} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/((1/cos(c + d*x))^(1/2)*(a + a*cos(c + d*x))^(5/2)),x)

[Out]

int(1/((1/cos(c + d*x))^(1/2)*(a + a*cos(c + d*x))^(5/2)), x)

________________________________________________________________________________________